
■1

W
h

it
e

 P
a

p
e

r

Ranking IT Productivity
Improvement Strategies

W
h

it
e

 P
a

p
e

r

Martin Griss
Flashline Software Development Productivity Council

The short-term bias in today’s ROI mania may lead to poor choices. What to do, what to do?
IT directors and application/product development managers face numerous challenges

in selecting and funding strategies for productivity improvement in software develop-

ment and maintenance. They must choose from a large set of apparently competing

new processes, tools, and technologies. Some of these solutions are touted as ‘silver

bullets,’ applicable to all projects, while others are applicable only to projects of a cer-

tain type or size. Some seem to work with small teams of empowered developers; oth-

ers seem better suited to large, distributed organizations. Some solutions promise low-

cost, low-risk improvements that can be widely and quickly introduced across the

company, while others are more costly, engender greater risk, and must be tested and

refined in a pilot before wider deployment. Furthermore, various combinations of these

solutions can be either mutually complimentary or potentially incompatible.

The purpose of this paper is to explain an effective way of ranking IT productivity

strategies. Some of these strategies will affect individual or small team methods and

tools, while others require the collaboration of multiple project teams to achieve the

promised benefits. The key message is that one needs to strongly align the software

improvement goals with the overall business goals, and that the strategy should be to

create and carefully state and manage a portfolio of short, medium, and long-term

improvement efforts, rather than focusing only on short-term tactical improvements.

Business and risk-driven decision criteria

In order to effectively evaluate the various productivity-improvement strategies it is nec-

essary to weigh and prioritize a mix of criteria in order to provide a balanced scorecard.

First and foremost, we must consider the specific business goals and their urgency.

Without a well-articulated business goal it will be difficult to motivate and sustain the

investment, especially for a longer-term, strategic intervention. There are various com-

mon goals, typically:

■ Improve business and IT agility ■ Reduce development and maintenance time

■ Improve quality ■ Reduce development and maintenance costs

The prioritization of goals has a significant impact on the shape of the initiatives. For

example, when considering reuse as a productivity strategy, if “time to market” has pri-

ority over “cost” one will be willing to invest in many more reusable assets than if cost

is the driving concern – even if there is a possibility that some of these assets may not

be immediately used.

After prioritizing goals we must then consider how quickly we need to see a visible

benefit, and how widely to adopt the necessary changes across the organization in

order to achieve the desired goal. This leads to consideration of risk management and

incremental piloting and adoption strategies, which can reduce risk, but also can

reduce the pace and size of the payoff.

Key Message
Software development and
maintenance productivity
investments must be consid-
ered as a portfolio of strate-
gies strongly aligned with
overall corporate business
goals.

Challenge
Possible productivity
improvement strategies:

■ Address different levels
of improvement

■ Deliver results in short,
medium or long term

■ Have varying degrees
of risk

Levels of Productivity
Improvement
■ Individual

■ Project

■ Departmental/
Business Unit

■ Enterprise

Productivity Improvement
Strategies Considered
■ Inspections

■ Personal Software
Process (PSP SM)

■ Team Software
Process (TSP SM)

■ Rational Unified
Process (RUP)

■ Capability Maturity
Model (CMM)

■ Agile Development

■ Extreme Programming (XP)

■ Reuse

■ Component-Based
Software Development

Management Risk Issues
■ Scope of effort

■ Organizational readiness

■ Technical maturity

Flashline Achieving a Better Return on Software™ Series

■2

Extreme Programming 12,17(XP)

*IND = Individual, BU = Business Unit, ENT = Enterprise

Product Line Development 2,18

Component-Based Software
Engineering (CBSE18)

Figure 1 - Software Development Productivity Improvement
Strategies

Orientation

Productivity Improvement Strategy IND* Project BU* ENT* Characteristic Features and Focus

S M L

Personal Software Process (PSP SM) 7 • Build individual skill and process; focus on individual
process, design, estimating and review discipline;
self-calibration. CMM compatible.

Team Software Process (TSP SM) 8 • Extends PSP with specific roles, risk management to
build quality products on cost and schedule. CMM
compatible.

Inspections 5,10,17 • • Systematic approach to cost-effective review of
architecture, design and code.

Rational Unified Process (RUP) 13 • • • Model driven architecture, design and development;
customizable framework for scalable processes;
defines many roles, artifacts and incremental/
iterative workflows. Some reuse-oriented extensions,
such as RSEB2 and EUP16.

Agile Development 11,12,17 • • Include most of high-collaborative, incremental test
and feature-driven development, effective pair-pro-
gramming. Focus on people and communication,
incremental delivery.

Open Source 14 • • Community building methods and technology, informal
reuse, strong architects/gatekeepers roles; “free”
beta-testers/co-developers; quality through “thou-
sands of eyes.”

Capability Maturity Model (CMM) 6 • • • • • • Builds organizational capability; focus on repeatability
and predictability of process, defines key process
areas that are addressed, provides 5-level assess-
ment model and incremental adoption guidelines.
(PSP and TSP are individual and small team instantia-
tions of CMM guidelines).

Reuse 2,9,15,16,18 • • • • • Proactive supporting, management, architecting and
designing asset reuse across multiple provider and
user project teams.

Key risk management issues include scope, organizational readiness, and the technical maturity of the proposed

change. Organizational readiness is a big issue; prior and ongoing experience with (competing) initiatives and interac-

tion with other initiatives (software or otherwise) will determine how much resistance must be overcome and how

much (extra) learning and adoption time is needed.

As you can see, one must carefully consider the tradeoffs between risk management, incremental adoption, desired

size and pace of visible improvement, and the technical maturity of the approach. Among other things, this will deter-

mine how big a pilot (if any) will be needed to validate and fine-tune the proposed practice for the chosen portion of

the organization.

■3

Treat the decision problem as investment portfolio management

One cannot simply pick a single productivity-improvement solution based on short

term ROI and overall expense. Doing so ignores the much greater potential of longer-

term programs like reuse or overall process improvement. It makes more sense to view

the issue as an investment in a portfolio of improvement projects, with a periodically

rebalanced mix of time-scale, scope, and risk. A simple yet effective risk-weighted

strategy for this would distribute the proposed projects into a rough two-dimensional

matrix of short / medium / long time-scales against high / medium / low risk, and adjust

the effective anticipated pay-off for each project by a correction factor for risk and

time-based discount, such as Net Present Value. We would then apply this to a variety

of projects, periodically examining and rebalancing the portfolio, confident in seeing

useful, strategic improvementsf1.

Not all improvement projects address the same issues

A quick review of a few basic statistics about software projects is useful in considering

sources of potential improvement.

IT managers are often fearful of investing in improvement projects and technologies

because they do not always deliver the promised improvements. However, those same

IT managers also know that too many business-critical software development projects

fail to deliver the promised functionality on deadline, if they ever deliver at all.

Standish Groupf2 research reveals that less than 30% of projects deliver results on their

promised schedule and cost, many of these with reduced functionality. Still others sig-

nificantly overrun schedule or budget. In the face of these statistics, choosing to do

nothing to improve the situation is in fact more risky than choosing to launch one or

more improvement efforts.

An analysis of many projects reveals that “avoidable rework”f3 is a significant problem

affecting quality, cost, and schedule. Furthermore, the longer rework is delayed in the

development cycle the more it costs and the longer it takes to complete. For single,

unrelated projects, avoidable rework is most often caused by misunderstanding of

and/or changes in requirements. For groups of related projects (product lines and

application families) the impact of rework is compounded by redundant development,

duplicate discovery and repair of defects, and wasted maintenance.

The “Top-10 factors influencing software quality and productivity,” developed by Boehm

and Basili1, reminds us that finding and fixing software problems after delivery is often

100 times more expensive than finding and fixing them during the requirements and

design phase. Their research indicates that 40% -50% of the effort on traditional soft-

ware projects is spent on avoidable rework. Their analysis shows that about 80% of this

avoidable rework comes from 20% of the defects, most of which are located in just 20%

of the modules. This suggests that improvement efforts should be focused on early

Productivity Improvement
Investment Portfolio
■ Aligns with corporate goals

■ Balances time-scale, scope,
size of investment, antici-
pated return, and risk

■ Periodically re-balanced

Avoidable Rework
■ In unrelated projects,

caused by

• Misunderstanding

• Changes in requirements

■ In related projects,
caused by

• Redundant development

• Duplicate discovery and
repair of defects

• Wasted maintenance

f1. For an example of this approach see Grady’s “A Portfolio of Investment Choices”5, pg 68

f2. The Standish Group, 2001 – less than 30% of business enabling IT initiatives are on time and on budget, often deliv-
ering less than 70% of promised functionality; about 50% are significantly off target and the rest fail totally. Many of
the failures are some 63% over schedule and 45% over budget. Large projects in large companies do even worse.

f3. Not all rework is avoidable; requirements, understanding and the technical and business environment do in fact
change while the project is underway; while (more) agile methods such as the spiral lifecycle, incremental/iterative
development and extreme programming go a long way to shortening cycles and improvement alignment with
changing customer needs, some rework is unavoidable.

f4. In general, time and cost are related in a non-linear way, as shown by the well-known Putnum and CoCoMo
estimation formulas.

f5. Adopting incremental/iterative development, XP and Agile methods reduce the feedback loop, partially correcting
requirements mismatches and other defects earlier. Pair Programming and Model With Others replaces of the dis-
tinct peer reviews of code and models with ongoing reviews done during the team development17.

■4

detection and prevention of defects, and on finding and reducing the number of “error-

prone” modules, using a combination of reviews, testing, careful design, and the imple-

mentation and reuse of high-quality modules. The evidence further suggests that peer

reviews (especially perspective-focused reviews) catch 60% -75% of defects, while disci-

plined personal practices can reduce defect introduction rates by up to 75% f4.

Grady5 offers a more detailed set of cost factors for development (see Figure 2), as

derived from studies at HP and elsewhere. Maintenance is treated as yet another itera-

tion of development, preceded by knowledge recovery. In Grady’s model, performing

inspections on requirements, design, and code will reduce some of the rework in all

areas, at the expense of some extra work. Grady estimates a maximum cost saving of

no more than about 10% short term and 10% longer term (with similar time savingsf5).

If only code inspections are performed (as is the case in many organizations) the cost

savings will be significantly less, perhaps only 3%. Fortunately, inspections can be

taught quickly and introduced with relatively low risk.

Synergy vs. competition of potential improvements

Often, decision makers feel that they have only a single choice among apparently com-

peting solutions. For example, people often ask “should we choose CMM, reuse, or

Extreme Programming?” or “should we choose RUP, PSP/TSP, or Extreme Programming?”

or “should we choose reuse or inspections?” In fact, several of these techniques can be

synergistic, or can be addressed as important precursor steps to others; some can be

explored as part of several parallel pilots.

CMM primarily addresses organizational/process improvement; inspections generally

address project/method improvement; and reuse addresses architecture/product/tech-

nology. There is potential overlap and synergy in several places. In particular, as certain

organizational aspects of reuse are addressed3, 4, a more holistic integration of people,

process, and technology improvements is accomplished. Method/process improve-

ments such as RUP or Agile Development can harmoniously interact with reuse, espe-

cially if customized, staged, and positioned appropriately2, 16.

Figure 2 - Management Cost Model

[]

Categories of Improvement
■ Organizational (process)

■ Project (methodology)

■ Architectural (technology)

■5

Figure 3 - Summary and comparison of approaches

Approach Benefits and Potential Improvements Risks Timescale Costs

Reuse - Managed

Inspections

RUP

Improve quality, reduce time to market, and
improve interoperability. Cost savings of about:
10-15%, some reduction in development time,
improve quality by 1.5-3x.

Catch defects early, avoid rework. Important to do
more than just code review for full, early benefits.
Can reduce overall cost by 3-20%, reduce later test-
ing and rework time.

Improve capture and analysis of requirements, define
and articulate architecture, develop detailed specifi-
cation of interfaces, systems and components; syner-
gizes well with Designed Reuse. Provides a well-
understood framework for customized/standardized
methods and processes of various levels of ceremony.

Will encounter more
resistance and need more
process and education
as well as some organiza-
tional changes.

Low, but some resistance
to extra busy work.

People may resist extra
modeling and documenta-
tion work, creation of
models, keeping models

To ensure that cho-
sen assets used and
significant cost and
quality benefits
result, must institute
process policy and
review steps to
ensure adequate
control.

Quick adoption,
early benefits.

Can be learned in
several week long
classes, but takes
many months to
become skilled

Takes time, training and
process changes to get
people to comply with man-
aged asset policy; extra
work to re-document/re-
engineer assets. Need sup-
port team to support repos-
itory and manage assets
and process.

Small amount of training,
can introduce incrementally
or in parallel. May add extra
time earlier in process.
Some reviews redundant
with Agile approaches.

Tools and training class-
es, and especially a
period of mentoring to
help master the skills

Reuse - Facilitated
(Open Source)

Reduce time to market and improve costs, but rela-
tively low to medium levels of reuse (~5-15%) and
consequent modest benefits. Can save development
costs by about 5-10%. Open Source approaches
inside or inspired by an enterprise are a form of
Facilitated Reuse15

Low risk to introduce
toolset and policies.
May need some incentives
and education to help
expand use.

Can be started in a
few weeks, with a
few months to get
sufficient assets
into the repository.

Low cost to install reposi-
tory, initial assets, start
evangelizing or incenting
(re-)use; some additional
cost to harvest and pack-
age assets.

Reuse -
Designed

Greatly improve quality, reduce time to market,
improve interoperability, get high levels of reuse
(~ 60%-90%)

Can reduce cost by 15-35%, time by 2-3x and
improve quality by 5-10x, reduce overall long-
term maintenance costs

Need to a relatively stable
domain and (predictably)
“bushy” product line to
ensure maximum benefits
from larger initial investment
in architecture, design,
frameworks and generative.
Domain or technology could
change before payback
achieved. Proceed incremen-
tally.

May take several
typical project
cycles (2-3 years)
to build enough
high-quality assets
to produce high-
levels of reuse and
dramatic improve-
ments.

Increased cost to do
some domain engineer-
ing, train architects,
component developers,
incrementally reengineer
assets or develop more
reusable ones from
domain models

Agile
Development/XP

Improve customer orientation, quality Typically, pilot with one
project, takes some
months before all resist-
ance overcome to new
way of work

Some resistance and
disbelief that should
work. *May take
several iterations to
convince people.

Training, experience
consultant to help start-
up.

CMM improvement

(PSP and TSP are
individual and small
team instantiations)

Improve predictability and productivity, reduce
defects. Improved discipline and stabilized configura-
tion management synergize with reuse program to
reduce cost of reuse.

May trigger resistance to
“increased process”;
takes a while to yield visi-
ble, measurable benefits.

Typically takes
12-18 months per
CMM level; PSP
and TSP can be
taught and adopt-
ed in several
months.

Significant training and
reinforcement needed to
ensure that people stay
the course and follow the
process. PSP and TSP are
useful skill improvement
experiences.

■6

As an example, consider the adoption of peer reviews, inspections and/or perspective-

driven reviews. These are relatively low-ceremony, low-risk, easy-to-learn processes

that can dramatically improve the quality of various software artifacts — such as

architectures and designs — early in the development cycle, well before code is pro-

duced. Small teams can adopt these techniques independently; over time, the tech-

niques can be spread to the entire organization. They also help reduce rework and test-

ing time. If your organization is not engaging in some form of these reviews, you

should seriously consider their introduction for the immediate benefits they are almost

guaranteed to deliver. Later, you will probably have to modify the specific process steps

and perspective checklists as your organization moves to more encompassing reuse

processes and/or Agile development. But having already laid the foundation you will

have gained early wins. Agile development methods include or supplant some inspec-

tions and peer reviews 17.

Observations and summary

In summary, it is important to develop and refine an overall improvement strategy that

carefully selects a set of short, medium, and long-term improvements, and actively

schedules and coordinates the next steps in and manages the flow of the elements in

the portfolio.

Figure 3 summarizes some of the potential benefits for each of the approaches. The

three modes of reuse mentioned — Facilitated, Managed and Designed — vary in the

levels of proactiveness involved in both the management of the reuse process, and in

the design and management of reusable assets. 15

I have seen variants of this business-goal-driven improvement portfolio at several com-

panies, including Hewlett-Packard®, Agilent™ and others. For example, in one HP busi-

ness-unit with several divisions, the business goals were to improve overall software

quality, reduce cost, and enhance interoperability. This led to a portfolio that involved a

significant investment in a component-oriented architecture, improved testing and

code reviews, and reuse-oriented design and management of components.

In a multi-divisional instrument business unit, the crucial goal was to significantly

decrease time to market at the same time that the variety of products was increasing.

In nine months they developed an instrument architecture and designed supporting

components. Over the space of several years they expanded the number of compo-

nents, increased the use of object-oriented modeling and implementation of new com-

ponents and significantly reduced time to market, shrinking new product development

time from over 18 months to as little as 5 months, with levels of reuse ranging from

25% to over 50%.

Finally, another systems business unit chose to improve its overall software pre-

dictability and quality, and reduce the amount of duplicate or near duplicate code, by

establishing a multi-year process improvement initiative leading to CMM 3 (and high-

er), as well as a systematic, architected component reuse project that started by min-

ing and reengineering key components from several existing and ongoing projects, and

then moved to more reuse-focused architecture and components designed for reuse.

■7

About The Author

Martin Griss is highly regarded as one of the leading authorities on software reuse,

having spent nearly two decades as Principal Laboratory Scientist at Hewlett-Packard

and as Director of HP’s Software Technology Laboratory. At HP, Griss was widely known

as the company’s “Reuse Rabbi” where he helped introduce software reuse into the

company’s development processes and defined a reuse consultancy. His research has

covered software reuse processes and tools, software agents, software factories, com-

ponent-based software engineering, and software-bus frameworks. Griss has written

extensively on software reuse for a number of industry publications, and is co-author

of the widely read “Software Reuse: Architecture, Process and Organization for Business

Success.” He is currently an Adjunct Professor of Computer Science at the University of

California, Santa Cruz, and at the University of Utah.

Mr. Griss earned a B.Sc. from the Technion in Israel in 1967 and a Ph.D. in Physics from

the University of Illinois in 1971.

About the Flashline Software Development Productivity Council

Martin Griss is a member of Flashline’s Software Development Productivity Council

(SDPC), an unprecedented assemblage of knowledge and experience covering the broad

spectrum of software development areas including software engineering process and

environments that affect today's corporations. The members of the SDPC are individu-

ally recognized authors and consultants in a wide range of subjects covering the entire

software development lifecycle and its relation to the corporate bottom line. Their

expertise guides the evolution of Flashline’s products and services. Through direct con-

sultation with Flashline customers the SDPC aids in the realization of the goal of

greater return of software.

1

■8

■ 1300 East 9th Street, Suite 1600, Cleveland, OH 44114 ■ T: (216) 861- 4000 ■ F: (216) 861-1861 ■ www.flashline.com
© 2003 Flashline, Inc. All Rights Reserved. Flashline, Inc. is a registered trademark of Flashline, Inc. in the United States and other countries. Other trademarks are the property of their respective owners.

Reproduction of this publication for commercial purposes without prior written permission is forbidden.

References

1. Boehm, B. and Basili, V. Jan 2001, Software Defect Reduction Top-10 List. IEEE Software.

2. Jacobson, I., Griss, M. and Jonsson, P. 1997. Software Reuse: Architecture, Process, and
Organization for Business Success. Addison-Wesley.

3. Griss, M. Mar 1998. CMM as a Framework for Systematic Reuse - part 1. Object

Magazine.

4. Griss, M. June 1998. CMM, PSP and TSP as a Framework for Adopting Systematic Reuse

- part 2. ObjectMagazine.

5. Grady, R. B. 1997. Successful Software Process Improvement. Prentice-Hall.

6. Paulk, M.C., et al. July 1993. Capability Maturity Model, Version 1.1. IEEE Software.

pp.18-27.

Paulk, M. C., et al. 1995. The Capability Maturity Model: Guidelines for Improving the
Software Process. Addison-Wesley. See also more recent SW-CMM and CMMI:

http://www.sei.cmu.edu/cmm

7. Humphrey, W. S. 1996. Introduction to the Personal Software Process (SM). Addison-Wesley.

See also http://www.sei.cmu.edu/tsp/

8. Humphrey, W. S. 1999. Introduction to the Team Software Process(SM). Addison-Wesley, 1999.

See also: http://www.sei.cmu.edu/tsp/

9. Lim, W. C. 1998. Managing Software Reuse: A Comprehensive Guide to Strategically
Reengineering the Organization for Reusable Components. Prentice-Hall.

10. Gilb, T., Graham, D. and Finzi, S. 1993. Software Inspection. Addison-Wesley.

See also: http://www.result-planning.com/ and http://www.mfagan.com

11. Highsmith, J. 2002. Agile Software Development Ecosystems. Addison-Wesley.

See also: http://www.agilealliance.org

12. Beck, K. 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley.

See also: http://www.xprogramming.com/

13. Kruchten, P. 2000. The Rational Unified Process: An Introduction (2nd Edition). Addison-

Wesley. See also: http://www.rational.com/products/rup

14. Feller, J., Fitzgerald, B. and Raymond, E. S. 2001. Understanding Open Source Software
Development. Addison-Wesley. See also: http://www.opensource.org/ and

http://www.osdn.com/

15. Griss, M. (Available Q2 2003). Reuse Comes in Several Flavors, Flashline, Inc.

16. Ambler, S. W. 2002. Enterprise Unified Process. Ronin International.

17. Ambler, S. W. Aug 2002. Validating Agile Methods, The Cutter IT Journal.

18. Heineman, G. T. and Councill, W. T. 2001. Component-Based Software Engineering –
Putting the Pieces Together, Addison-Wesley.

