
0018-9162/01/$10.00 © 2001 IEEE May 2001 37

C O V E R F E A T U R E

Accelerating
Development with
Agent Components

A
s the demand for more flexible, adaptable,
extensible, and robust Web-based enterprise
application systems accelerates, adopting
new software engineering methodologies
and development strategies becomes criti-

cal. These strategies must support the construction of
enterprise software systems that assemble highly flex-
ible software components written at different times by
various developers. Traditional software development
strategies and engineering methodologies, which
require development of software systems from scratch,
fall short in this regard.

Component-based software engineering offers an
attractive alternative for building Web-based enter-
prise application systems. CBSE works by developing
and evolving software from selected reusable software
components, then assembling them within appropriate
software architectures. By promoting the use of soft-
ware components that commercial vendors or in-house
developers build, the component-based software devel-
opment approach promises large-scale software reuse.
Component-based software development has the
potential to

• significantly reduce the development cost and
time-to-market of enterprise software systems
because developers can assemble such systems
from a set of reusable components rather than
building them from scratch;

• enhance the reliability of enterprise software sys-
tems—each reusable component undergoes sev-
eral review and inspection stages in the course of
its original development and previous uses, and
CBSE relies on explicitly defined architectures and
interfaces;

• improve the maintainability of enterprise soft-
ware systems by allowing new, higher-quality
components to replace old ones; and

• enhance the quality of enterprise software sys-
tems—application-domain experts develop com-
ponents, then software engineers who specialize
in CBSE assemble those components into enter-
prise software systems.1

Researchers generally agree that developers create
software components primarily so that they can be
reused in various software systems. They also gener-
ally accept that a component is a unit of independent
deployment that interacts with its environment
through its well-defined interfaces while encapsulat-
ing its implementation.

The component-based software development life
cycle differs from traditional software development
in many ways. The component-based software-sys-
tem design phase includes new activities such as selec-
tion and creation of software architectures, as well
as selection and customization of a set of software
components. In addition, the implementation phase
deals with the integration of a set of software com-
ponents within appropriate software architectures.
This requires developing wrappers that glue reusable
components together to build the software system,
rather than extensive coding to build a software sys-
tem from scratch. Late integration of components
developed by others eliminates the confidence usu-
ally drawn from integration testing in a traditional
software engineering model. Developers must archi-
tect and design extensibility into a system and all its
parts—or the components in the resulting system will
not be independently producible and deployable.1,2

This analytical survey of agent components reveals that the technology
will likely form the foundation for flexible, intelligent, Web-based enterprise
application systems.

Martin L.
Griss
Hewlett-
Packard
Laboratories

Gilda Pour
San Jose State
University

38 Computer

Software agents offer greater flexibility and adapt-
ability than traditional components. Agent-oriented
software engineering allows developers to use a set
of high-level, flexible abstractions to represent and
understand Web-based enterprise application sys-
tems. Rapid integration of distributed agents provides
opportunities to build such software systems.

For example, the increasing volume of Internet traf-
fic that various Web-based enterprise applications
require has inspired the delegation of information
search, analysis, and negotiation to automated assis-
tants, implemented using software agent technology.
Examples include Shopbots and Pricebots, which
monitor product availability and price, then negoti-
ate and complete sales of goods and stocks to opti-
mize business-to-consumer and business-to-business
interactions.

Agents communicate by passing dynamically adapt-
able rich messages, using flexible knowledge-based
techniques to facilitate building and evolving software
systems as software technologies and requirements
change.3 Developers use increasingly pervasive mes-
sage-based middleware and component technologies,
Java, Extensible Markup Language (XML), and
the Hypertext Transfer Protocol (HTTP) to create
agent-based enterprise software systems. New, mobile
appliance-oriented application servers and portal tech-
nologies based on these technologies, such as HP’s
“totally e-mobile” Bluestone, provide a base for more
robust agent-oriented, Web-based enterprise applica-
tion systems. These technologies promise to make the
use of mobile appliances, adaptive content, and soft-
ware agents quicker and easier.

Intelligent agents—autonomous components that
have their own goals and beliefs and can reason about
their present and future behavior—offer ample oppor-
tunity for rapid, incremental development of Web-
based enterprise application systems. Developers can

apply these systems to a variety of complex, dynamic
domains, ranging from e-commerce to human plane-
tary exploration.

AGENTS: NEXT-GENERATION COMPONENTS
Although we lack a universal definition of agents,

according to the commonly used one, an agent is a
proactive software component that interacts with its
environment and other agents as a surrogate for its
user, and reacts to significant changes in the environ-
ment. We call a component an agent if it exhibits a
combination of several of the following characteris-
tics, as shown in Figure 1:

• Autonomous. The agent proactively initiates activ-
ities in accord with its goal, has its own thread of
control, and can act on its user’s behalf, largely
independent of messages other agents send.

• Adaptable. Either its own learning, user cus-
tomization, or downloading new capabilities can
change an agent’s behavior after deployment.

• Knowledgeable. The agent can reason about its
goals, acquired information, and knowledge
about other agents and users.

• Mobile. The agent can move from one executing
context to another, either by moving its code and
starting afresh or by serializing its code and state,
continuing execution in a new context and retain-
ing its state to continue its work.

• Collaborative. The agent can communicate and
work cooperatively with other agents to form
dynamic or static multiagent societies, collabo-
rating to perform a task.

• Persistent. The infrastructure enables agents to
retain knowledge and state over extended peri-
ods of time, including robustness in the face of
possible runtime failures.

We view agents as next-generation components and
agent-oriented software engineering as an extension
of conventional CBSE. Developers can integrate dif-
ferent agent types—personal, mobile, and collabora-
tive—to build agent-based enterprise systems in a wide
variety of problem domains. Daemons are simple
agents that patrol networks to find available resources.
Other, more complex and intelligent agents navigate
the Internet to collect relevant data, perform tasks, and
even make decisions on behalf of their users. The new
generation of intelligent software agents can manage,
organize, and sift through enormous amounts of data
on behalf of their users. For instance, agents in e-com-
merce applications can dynamically discover and com-
pose e-services and mediate interactions. Agents can
also serve as delegates to handle routine tasks, moni-
tor activities, set up contracts, execute business
processes, and find the best services.4

Autonomous

Adaptable

Knowledgeable

Mobile

Persistent

Collaborative

Figure 1. Components
as agents. A compo-
nent can be called
an agent if it exhibits
a combination of
the characteristics
shown here.

May 2001 39

Agent-oriented programming5 decomposes large
and complex distributed systems into relatively
autonomous agents. An agent-oriented developer cre-
ates a set of agents—each driven by its own beliefs,
desires, and intentions—that collaborate among them-
selves by exchanging structured messages. Developers
can apply and adapt design methods, architectures,
patterns, and generators based on the Unified
Modeling Language (UML) to aid in the rapid incre-
mental development of agent-based systems.

Developers often use distributed objects, active
objects, and scriptable components to implement
agents. Usually driven by goals and plans rather than
procedural code, agents encapsulate business or domain
knowledge. They often differ more from each other by
the knowledge they have and the roles they play than
by the differences in their implementing classes and
methods. Agents can use different mixes of mobility,
adaptability, intelligence, agent communication lan-
guages (ACL), and multilanguage support. Developers
can use either artificial intelligence or conventional pro-
gramming technology to implement agents.

AGENT SYSTEM ARCHITECTURE
Agents reside and execute in a conceptual and phys-

ical location called an agency. The agency provides
facilities for locating and messaging mobile and
detached agents and for collecting knowledge about
groups of agents. The agency’s core is the agent plat-
form, a component model infrastructure that provides
local services for agents and includes proxies to access
remote services such as agent management, security,
communication, persistence, and naming. In the case
of mobile agents, the agent platform also provides
agent transport. Most agent systems provide addi-
tional services in the form of specialized agents that
reside in some—possibly remote—agency. Some agent
systems also include standard service agents, such as
a broker, auctioneer, or community maker. These ser-
vice agents augment the basic agent infrastructure.
The agent platform and additional service agents can
monitor and control message exchanges to detect any
violation of the rules of engagement. Figure 2 shows
the agent system architecture.

Multiagent communication
An agent system consists of components with sim-

ple interfaces. Much of the system’s power comes from
its loose coupling style, in which agents interact dynam-
ically by exchanging asynchronous messages. An agent
system’s complex behaviors result from the messages
the components process and exchange with each other.
To communicate with one another, the agents must con-
form to some common, well-defined interaction stan-
dard. An ACL is a specialized declarative language that
defines the overall structure and standard patterns of

interaction between agents. The agent system associ-
ates the ACL with the component model and factors
messages into several relatively independent parts: the
message type, addressing, context, and message con-
tent. Some message parts describe the domain, others
describe the expected conversation pattern. This
approach makes it easier to dynamically extend agents
to new problem areas while the system checks confor-
mance to expectations and lets the component model
infrastructure manage messages and agents.3

Several well-known agent communication lan-
guages, such as KQML6 and FIPA ACL (http://www.
fipa.org/), have been converted to a standard XML
form. At HP Labs, developers define KXML 1.0 using
an XML encoding that combines aspects of several
ACLs.3 Some ACLs support the beliefs, desires, and
intentions model, while others make it easy to con-
firm that agents conform to organizational conven-
tions and display acceptable behavior. Each ACL
factors messages in different ways and provides dif-
ferent standard reusable parts. All ACLs make it pos-
sible to write agent components more quickly and
more independently of other agents, allowing the
agents to exchange messages so they can dynamically
discover each other and the services they offer.

Agents interact with one another using a set of
vocabularies—also called an ontology—grounded in
the application domain. A vocabulary consists of a
word set that describes things, attributes, and actions
from some domain, their relationships and meanings,
and how the agent system uses the vocabulary to struc-
ture interactions and access services. An international
standards committee such as OMG, EDI, or SWIFT
can agree upon terminology to use in creating a vocab-
ulary, or industry groups such as banking or motor
parts manufacturers can agree upon terminology for
specific markets.

Several organizations are standardizing vocabular-
ies and related e-commerce frameworks, which vary

Service agent

Agent

Software

Service agent

Agent platform

Agent

Users

Agency

Other
agent
systems

Figure 2. Agent sys-
tem architecture. The
agent platform serves
as the system’s core,
while a component
model infrastructure
provides agents with
local services and
proxy access to
remote services.

40 Computer

from one problem domain to another. If a problem
domain is dynamically formed based on a specific
application, its ontology is also dynamic. Any of the
following can represent an agent vocabulary:

• a natural language dictionary that lists terms,
their meanings, and intended use;

• an XML document type definition that defines
terms and some relationships—such as attribute
syntax and some typing—where comments or an
external dictionary explain the meaning, addi-
tional relationships, and intent;

• an object-oriented XML schema (see http://
www.w3c.org/) that more precisely defines struc-
tured data types and attributes, uses element
inheritance, and provides more precise control
over how many of each element type and attri-
bute are permitted; and

• a full modeling language and tool, such as UML
or Ontolingua, for defining vocabulary class and
type elements, inheritance or association rela-
tionships, and semantics and constraints using
OCL and comments.

The interacting agents must understand the vocabu-
lary used to communicate with one another. Some
words can be defined formally in terms of other words,
but others must be described in a standard dictio-
nary—such as BizTalk (http://www.biztalk.org), On-
tology.org (http://www.ontology.org), CommerceNet
(http://www. commercenet.com), CommerceOne (http://
www.commerceone.com), and RosettaNet (http://
www.rosettanet.org)—that tells the agent program-
mer how the agent system uses the words. HP E-Speak

provides a basic vocabulary for describing and man-
aging other vocabularies (http://www.hp.com/e-speak).

Multiagent coordination
The complex tasks an enterprise computing envi-

ronment requires demand that developers integrate
a group of various agents to coordinate this activ-
ity. Building reusable multiagent interaction tech-
niques into the integration infrastructure itself
facilitates rapid integration. A multiagent system
can group agents statically or dynamically and the
agents can coordinate with other agents as well as
with people. We call the conversation between
agents themselves and agents and people choreog-
raphy or conversation management.

Several technologies and tools have emerged that
make defining these interaction patterns easier. The
expected message sequences can have several possi-
ble levels of choreography, depending on how loosely
or tightly the system must control the allowed inter-
actions.3 In all cases, rather than directly program-
ming the code to handle message coordination, we
use some form of higher-level declarative rules or
graphical models. These models make it easier to see
how the agents interact. The system can use explicit
rules or models to monitor or enforce compliance,
easing the programmer’s task.

Techniques for agent coordination include the fol-
lowing:

• Rules. We can define a set of rules for any agent
or community of agents. For example, we could
customize an agent’s time to wait for a response,
the number of other agents it can talk to at one

Depending on their function, we can
classify agents in one of several major cat-
egories.

Personal Agents
These agents interact directly with a

user, presenting some personality or char-
acter, monitoring and adapting to the
user’s activities, learning the user’s style
and preferences, and automating or sim-
plifying certain rote tasks. Toolkits such
as Microsoft Agent (http://www.microsoft.
com/msagent) offer a software services set
that supports the presentation of software
agents as interactive personalities and
includes natural language and animation
capabilities. Simple examples built using
this technology include Microsoft’s Bob
or Paper Clip. The site http://www.
bottechnology.com provides a survey of
some personal agent technologies, while
http:// www.redwhale.com describes per-
sonalizable interfaces that use aspects of
agent technology. Many of the informa-

tion agents developed at MIT fall into this
category as well.

Mobile Agents
Sent to visit remote sites and collect

information before returning with the
results, mobile agents aggregate and
analyze data or perform local control.
Developers typically implement these
agents in Java, Java-based component
technologies, TCL,1 VBScript, Perl, or
Python (http://www.python.org/). Such
data-intensive analysis is often better
performed at the source because doing
so avoids the shipment of bandwidth-
consuming raw data. Examples of such
applications include network manage-
ment agents, Internet spiders, and NASA’s
mobile agents for human planetary explo-
ration.

Collaborative Agents
These agents communicate and interact

in groups, representing users, organiza-

tions, and services. Multiple agents ex-
change messages to negotiate or share in-
formation. Collaborative agent examples
include those that expedite online auc-
tions, planning, negotiation, and logistics,
supply-chain, and telecom service provi-
sioning. Cobalt, for example, uses KQML,
Corba, CIM, IDL, and XML for coopera-
tive service and network management.2

References
1. J. Ousterhout, “TCL: An Embeddable

Control Language,” Proc. Usenix Conf.,
Usenix Assoc., Berkeley, Calif., 1990, pp.
133-146.

2. M. Griss, “Software Agents as Next-Gen-
eration Software Components,” Compo-
nent-Based Software Engineering: Putting
the Pieces Together, G. Heineman and W.
Council, eds., Addison Wesley Longman,
Reading, Mass., to be published June
2001.

Agent Types

May 2001 41

time, and what sort of responses to make to a spe-
cific message from various agent types.

• Conversation protocols. Expressed as finite state
machines that use UML state charts, these pro-
tocols enable a group of agents to lockstep
through a standard protocol of exchanged mes-
sages—if A says x, then B says y—when, for
example, bidding during an auction or responding
to a call for proposals.

• Workflow. The most powerful technique is used
when the conversation coordination for interac-
tions of multiple agents and humans must be
more complex and precise. A workflow system
allows the explicit definition and control of a
group of participants that executes a process.

Many e-commerce applications involve some form
of inter- or intraorganizational workflow. Using a
defined set of rules, a workflow system automates all
or part of a business process, document exchange, or
transmission of information or tasks to be acted upon
from one participant to another. Workflow systems
such as ActionWorks Metro, Endeavors, HP Change-
Engine, IBM FlowMark, Little-JIL, or Verve Work-
flow describe allowed connections between partici-
pants, desired and exceptional processing conditions,
the assignment of roles, and the request and allocation
of resources. For example, depending on the situation,
a telecom management system could alert a human
operator or assign a repair or provisioning engineer.

We view this use of workflow as a next-generation
scripting language. Workflow functions as a struc-
tured scripting or glue language in which agents rep-
resent the participants and resources while the society
of agents collaborates to enact the workflow. The
Little-JIL process programming language demon-
strates how we can use a workflow language to coor-
dinate agents. Worklets, an agent-like lightweight
process workflow system, uses Java and JPython for
its implementation.7

Automated workflow systems do not yet adequately
address information mobility or tasks disconnected
from the rest of a business process. MAGI—the
Micro-Apache Generic Interface, based on the Apache
HTTP server—provides an open-architecture frame-
work that explicitly addresses e-business messaging
and deployment issues across a broad range of com-
puting platforms. Both HP’s E-Speak and SUN’s Jini
map well to MAGI’s architecture.8

Agents in agent-oriented e-commerce systems
dynamically discover and compose e-services and
mediate interactions. XML can encode information
and services with meaningful structure and semantics
that agents can understand.

Using a structure coordination system and either a
visual state chart, UML activity, or another workflow

model, we can quickly diagram complex coor-
dination patterns and rapidly convert them into
an executing system. We can also use other visual
and generative techniques to build agent-based
systems, such as agent patterns, interaction dia-
grams, and aspect-oriented programming.9-11

WEB-BASED DEVELOPMENT
TECHNOLOGIES

Developers often use distributed objects,
active objects, and scriptable components to
implement agents. They can use Java, Java-
based component technologies, XML, and
HTTP to build agents. These technologies are
simple to use, ubiquitous, heterogeneous, and
platform-independent. Developers can use HTTP and
XML to implement many agent capabilities for nam-
ing and communication, and they can use the univer-
sal resource locator and universal resource identifier
for naming and locating. XML will likely become the
standard language for agent-oriented e-commerce
interaction to encode exchanged messages, docu-
ments, invoices, orders, service descriptions, and other
information.12 HTTP provides many services, includ-
ing robust and scalable Web servers, firewall access,
and some level of security.

The available agent systems and toolkits—such as
Agent-TCL, Aglets, Concordia, FIPA-OS, Grasshopper,
Jackal, JADE, Jatlite, Jumping Beans, Voyager, and
Zeus—have different mixes of mobility, adaptability,
intelligence, ACL, and multilanguage support.3

RELATED AGENT-ORIENTED SYSTEMS
The following examples describe some of the many

research projects currently investigating the develop-
ment of agent-oriented systems for complex, dynamic
environments.

HP Labs research prototypes
Several experimental agent projects are under way

at HP Labs in Palo Alto, Bristol, and Grenoble. These
projects include work on application management,
agent-mediated e-commerce, multiagent negotia-
tion and coordination, and personal and workplace
assistants.10,13

The CWave lightweight mobile agent system and
visual toolkit, developed jointly by HP Laboratories and
the University of Utah for experimental application
management and process control, uses COM/OCX, a
publish-subscribe bus, HTTP, and VBScript.14,15 Agents
include standard libraries of measurement objects and
methods to initiate, change, and dynamically update
measurement (http://beast.cs.utah.edu). HP Labs is also
developing an experimental Web-based economic sim-
ulation environment for a shopping mall, integrating
the environment with personal agents and mobile appli-

Workflow functions
as a structured

scripting language in
which agents

represent participants
and resources while
the society of agents
collaborates to enact

the workflow.

42 Computer

ances based on HP CoolTown (http://www.cooltown.
com)3 and using Zeus16 as a base. The most recent work
uses the JADE agent system and HP Bluestone to pro-
totype a variety of workplace productivity assistants for
mobile workers.

HP’s agent projects tackle important issues such as
how to effectively define and construct agents, how
agents communicate, and how to establish and control
collaborations between groups of agents. The combi-
nation of agents and workflow provides significant
benefits beyond those traditionally associated with
components and scripting.

Software agents have differing characteristics such
as mobility, autonomy, collaboration, persistence, and
intelligence. Some research seeks to simplify the direct
definition and implementation of different agent sys-
tems’ capabilities. Researchers combine aspects and
components that represent key capabilities to con-
struct an agent, or a set of compatible agents. UML
models of vocabularies, workflow, role diagrams, pat-
terns, and feature trees will drive aspect-oriented gen-
erators to create highly customized agent systems.9,10

The Iconic Modeling Tool11 uses visual techniques
and UML to assemble and control mobile-agent pro-
grams and itineraries. Such agents can perform a range
of simple or complex tasks, such as automatic notifica-
tion via e-mail that a report is available, sending a
reminder or rescheduling a meeting, or negotiating on
behalf of users.

Web-based multiagent systems for
NASA’s human planetary exploration

Future NASA missions will require robust and flex-
ible Web-based information systems that designers
can rapidly develop, extend, and customize. Thus, the
agency can meet these requirements by adopting
agent-oriented software engineering and agent com-
ponents. For example, a new Web-based multiagent
system can enhance human performance during plan-
etary exploration in hostile environments. Figure 3
shows this system’s high-level design, which consists
of mobile intelligent agents.

Such a system must meet the requirements of an
extremely dynamic environment in which nodes

appear and disappear from clusters, and transient
communication links undergo rapid changes. These
parameters motivated the design of an agent-based
system-control-and-configuration model (SCCM) to
allow multiple people using multiple instruments and
computers to automatically create a unique data
record of scientific activities.

The SCCM creates a map of the system configura-
tion by listening for the presence of each component on
the network. Exploration tools such as digital cameras
will use the federation of Jini Lookup services to adver-
tise their presence, function, and status to other net-
work nodes. The data-acquisition-and-correlation
agent acquires field data from a digital camera after
the explorer presses the shutter. The communication-
monitoring agent determines the data transfer path,
and the storing-and-forwarding agent stores and for-
wards the image to the system-control-and-configuration
center (SCCC).

The SCCC then passes both the event and location
of the new data to the human-centered-computing
(HCC) agents to determine what to do with the image,
based on the HCC’s workflow model. The data is
stored in local Web servers, which allow Web
browsers to be the primary human-computer inter-
face. Loose coupling of mobile agents and the use of
workflow in this project allow rapid development of
robust and flexible Web-based systems that NASA can
customize and extend to meet the requirements of
future human planetary exploration.

Candidate technologies for developing this system
include Java 2 Platform, Enterprise Edition, several
Jini mechanisms, Java-based component technologies
such as Enterprise JavaBeans and JavaBeans, and
agent technologies based on XML and HTTP.17

AGENT-BASED MIDDLEWARE
As agents become more powerful, message-oriented

middleware and agents will share the task of provid-
ing a variety of services, including

• location services that enable agents to find and
interact with one another in peer-to-peer or
client-server configurations;

• application services for functions such as
dynamic self-configuration and deployment;

• management services for functions such as reg-
istration and life-cycle management; and

• dynamic binding services between agents and
hardware.

Middleware can also provide federation, ownership,
and mobility services.

We agree with Ebrahim Mamdani and Jeremy Pitt18

that, as the intelligence of an overall system increases,
the distribution of intelligence will inevitably tend

Data-acquisition-
and-correlation

agents

System-control-and-configuration center
(SCCC)

Storing-and-
forwarding

agents

System
status
viewer

Human-centered-computing (HCC) agents
HCC

work plan
viewer

CommandsStatusHuman events

Automation
agents

Communication-
monitoring

agents

Figure 3. High-level
design of a Web-
based, multi-mobile-
agent system for
human planetary
exploration. Built
around a system-con-
trol-and-configuration
model, the system
allows multiple peo-
ple using multiple
instruments and com-
puters to automatic-
ally create a unique
data record of scien-
tific activities.

May 2001 43

toward the agents and away from the middleware.
This shift will result in a transition from intelligent
networks to networked intelligence in which any mid-
dleware functionality will itself be an agent. The avail-
ability of E-Speak; the Java 2 Platform, Enterprise
Edition; Jini; .NET; and Bluestone will help make this
transition possible.

Agent-component technology and agent-oriented
software engineering have the potential to be more
powerful than traditional, less dynamic compo-

nents for rapid incremental development. Most agent
and e-service systems offer several capabilities that work
together to provide unprecedented flexibility and
promise to be more effective at handling the resulting
software’s evolution, distribution, and complexity.

Further, some agents can act as mediators, or inter-
mediaries, transforming and delegating requests to
other agents and transforming and aggregating
responses. All these capabilities facilitate maintenance
and the evolution of agent-based enterprise systems
as requirements and technology change. Thus, agent-
oriented software engineering offers unique opportu-
nities for developing and maintaining Web-based
enterprise systems at Internet speed. ✸

References
1. G. Pour, “Component Technologies: Expanding the Pos-

sibilities for Component-Based Development of Web-
Based Enterprise Applications,” Handbook of Internet
Computing, B. Furht, ed., CRC Press, Boca Raton, Fla.,
2000, pp. 133-156.

2. I. Jacobson, M. Griss, and P. Jonsson, Software Reuse,
Architecture, Process, and Organization for Business Suc-
cess, Addison Wesley Longman, Reading, Mass., 1997.

3. M. Griss, “Software Agents as Next-Generation Soft-
ware Components,” Component-Based Software Engi-
neering: Putting the Pieces Together, G. Heineman and
W. Council, eds., Addison Wesley Longman, Reading,
Mass., to be published June 2001.

4. Q. Chen et al., “Multi-Agent Cooperation, Dynamic
Workflow and XML for E-Commerce Automation,”
Proc. 4th Int’l Conf. Autonomous Agents 2000, ACM
Press, New York, June 2000, pp. 255-256.

5. Y. Shoham, “Agent-Oriented Programming,” Artificial
Intelligence, vol. 60, no. 1, 1993, pp. 139-159.

6. T. Finin, Y. Labrou, and J. Mayfield, “KQML as an
Agent Communication Language,” Software Agents,
J.M. Bradshaw, ed., MIT Press, Cambridge, Mass.,
1997, pp. 291-316.

7. G. Kaiser, A. Stone, and S. Dossick, “A Mobile Agent
Approach to Lightweight Process Workflow,” Proc. Int’l
Process Technology Workshop, ACM Press, New York,
1999; http://www-adele.imag.fr./IPTW/.

8. G.A. Bolcer, “MAGI: An Architecture for Mobile and

Disconnected Workflow,” IEEE Internet Computing,
May/June 2000, pp. 46-54.

9. E.A. Kendall, “Role Model Designs and Implementa-
tions with Aspect-Oriented Programming,” Proc. OOP-
SLA 99, ACM Press, New York, pp. 353-369.

10. M.L. Griss, “My Agent Will Call Your Agent,” Software
Development Magazine, Feb. 2000, pp. 43-46.

11. B. Falchuk and A. Karmouch, “Visual Modeling for Agent-
Based Applications,” Computer, Dec. 1998, pp. 31-37.

12. R.J. Glushko, J.M. Tenenbaum, and B. Meltzer, “An
XML Framework for Agent-Based E-Commerce,”
Comm. ACM, Mar. 1999, pp. 106-114.

13. M.L. Griss and R. Letsinger, “Games at Work—Agent-
Mediated E-Commerce Simulation,” Proc. 4th Int’l
Conf. Autonomous Agents 2000, ACM Press, New
York, June 2000, HPL-2000-52 for extended version;
http://www-adele.imag.fr/IPTW/.

14. M.L. Griss and R.R. Kessler, “Building Object-Oriented
Instrument Kits,” Object Magazine, Apr. 1996, pp. 71-81.

15. C. Mueller-Planitz, “CWave 2000—A Visual Workbench
for Distributed Measurement Agents,” doctoral disserta-
tion, Computer Science Dept., Univ. of Utah, Salt Lake
City, 2000.

16. H. Nwana et al., “ZEUS: A Toolkit for Building Dis-
tributed Multi-Agent Systems,” Artificial Intelligence,
vol. 13, no. 1, 1999, pp. 129-186.

17. G. Pour, “A Jini-Based Mobile Agent Architecture for
Planetary Exploration,” Proc. Int’l Conf. Technology of
Object-Oriented Languages and Systems, IEEE CS Press,
Los Alamitos, Calif., to be published 2001.

18. E. Mamdani and J. Pitt, “Responsible Agent Behavior:
A Distributed Computing Perspective,” IEEE Internet
Computing, Sept./Oct. 2000, pp. 27-31.

Martin L. Griss is a principal laboratory scientist at
Hewlett-Packard Laboratories, Palo Alto, Calif. His
research interests include software engineering
processes and systems, systematic software reuse,
object-oriented development, component-based soft-
ware engineering, software agent technology, personal
agents, mobile appliances, and e-services. Griss
received a PhD in physics from the University of Illi-
nois. He is an adjunct professor at the University of
Utah and a member of the ACM SIGSOFT Executive
Committee. Contact him at martin_griss@ hp.com.

Gilda Pour is a professor of software engineering at
San Jose State University. Her research and industrial
experience is in distributed object technology and
component-based enterprise software engineering,
with current emphasis on component-based and
agent-oriented development of Web-based enterprise
application systems. Pour received a PhD in computer
science and software engineering from the University
of Massachusetts. She is a member of the IEEE Com-
puter Society. Contact her at gpour@email.sjsu.edu.

