
 CBSE Success Factors

1 Chapter 9, Component-Based Software Engineering

CBSE Success Factors:
Integrating Architecture, Process,

and Organization
Martin L. Griss, Ph.D.
Laboratory Scientist

Software Technology Laboratory
Hewlett-Packard Company, Laboratories

Palo Alto, CA, USA
(Chapter 9 in Component-Based Software Engineering: Putting the Pieces Together, Edited by George

T. Heineman, Ph.D. & William Councill, M.S., J.D., May 2001, Addison-Wesley

Introduction
A product-line is a set of applications that share a common set of requirements but also exhibit significant
variability in requirements. CBSE can exploit this commonality and variability to reduce overall
development costs and time. (See chapters 15, 22, and 36 for more on product lines).

Important connections exist among product-line CBSE, systematic reuse, component infrastructure, and the
processes and organization that produce a product-line. Most organizations successfully adopt CBSE
incrementally by carefully matching the new technology with a business need and organizational process
maturity. To effectively develop a product-line, you need a coherent approach to architecting the system, to
designing and structuring the components and component infrastructure, to organizing the workforce of
architects, designers and implementers, and to convert the development and business processes to CBSE-
based methods.

My approach has been shaped by business process engineering, UML modeling, and the SEI process
maturity frameworks. This chapter draws on my book “Software Reuse: Architecture, Process and
Organization for Business and Success”(Jacobson, Griss and Jonsson, 1997) and recent articles (Griss
1998, 1999, 2000). A reuse-driven software engineering business (RSEB) is a software development
organization that practices large-scale component-based product-line development and systematic reuse.
Business (process) engineering and model-driven techniques provide a comprehensive and systematic
approach to orchestrate the large-scale investment and change needed to establish an effective component-
based reuse program. In some cases, optimizations and the specific situation may allow or require that
some steps be omitted or modified.

Obstacles to Effective Component Reuse
Many organizations engage in informal reuse through code sharing or design patterns. However, systematic
reuse of software components across multiple applications and projects remains in its infancy. You will
face many obstacles as you make the transition from traditional software development to component-based
enterprise software development (Frakes 1994). To overcome these obstacles, a variety of issues must be
addressed (Jacobson, et al, 1997; Favaro et. al 1998; Pour 1998; Bosch 1999):

1. Business: how component development, support and training should be funded; lack of access to
vendor-supplied components; lack of a convincing business case and economic model for long term
investment; and, unclear definition of product-line.

2. Process: low process maturity of the organization; ill-defined or unfamiliar reuse-oriented methods and
processes; new coordination and management needs; and, absence of well-tested and documented
methods and models to relate features to component sets and variability.

 CBSE Success Factors

2 Chapter 9, Component-Based Software Engineering

3. Organization: lack of a systematic practice for reuse activities and enterprise component development;
lack of management expertise and support; and, cultural and trust conflicts.

4. Engineering: lack of adequate techniques and tools for identifying, designing, documenting, testing,
packaging, and categorizing reusable software components; too few and poorly understood standard
patterns and architectures.

5. Infrastructure: lack of widespread use of a standardized design notation such as the UML; lack of
tools and components; too many different programming languages and environments; and, lack of
support for multi-group configuration management.

Companies must make numerous decisions as they develop software-intensive products for rapidly moving
markets, such as Web-enabled applications or e-commerce systems (Griss 1997, 1998). These involve:

1. Time: Rapid product development and market agility are critical when developing distributed software
products. How should these time pressures affect processes, new architectures and component
infrastructures, business measures and organizational structures?

2. Process: How to adjust your process to move from a strictly feature-driven to a reuse-driven process? .
This means that instead of planning releases based only on the features they deliver, you increase
priority of those features that can be delivered by reusable elements. What standard processes and
process maturity levels (such as the SEI CMM) should be selected? How do we achieve widespread
use in the most expeditious way? How do these relate to reuse and CBSE?

3. Organization: There may be cultural and organizational issues that impede effective ways of working
with architected systems and components. Who owns standards, architectures and component
infrastructures? Who pays for component development? What discourages component sharing? What
organizational, management, and measurement changes are needed to encourage change?

4. Coordination: Coordination between new and ongoing technical and process improvement initiatives
is needed to avoid redundant or conflicting efforts. What are the connections between new
technologies and strategies for component development, improving process predictability, improving
quality and decreasing cycle time? What are the priorities? What standards are needed?

5. Technology: Common architecture, patterns and component infrastructures, reusable components, and
leverageable platforms are key to achieving decreased cycle time. What notations, standards, and
technologies should be used? How should they be introduced? What about standard tools?

Business-driven product-line

• The organization must have a visible, articulated and
compelling need for dramatic improvements in cycle
time, cost, productivity, agility and/or
interoperability.

• The organization must produce software
(applications, embedded systems or key
components) that form an obvious product-line,
application family or coherent “domain.”

Architected

• Applications, systems and components must be
purposefully designed and structured to ensure that
they fit together, and that they will cover the needs
of the family or domain.

• A well defined, layered, modular structure, and
various design and implementation standards (such
as the UML and patterns catalogs) will be of great
help.

Process-oriented

• Distinct software development and maintenance
processes for architecture and component
infrastructures, components, and applications must be
defined and followed.

• These processes must explicitly incorporate reuse. They
systematically identify and express commonality and
variability, and include standards for designing and
packaging components for reuse.

Organized

• Long-term management commitment is needed to
ensure that the organization is structured, trained, and
staffed to follow component reuse processes and
conform to standards.

• Distinct subgroups are needed to create, reuse, and
support reusable components. These teams must be
trained to follow the specific processes.

• People must have well defined reuse-oriented jobs, with
appropriate training, skills and rewards for effective
reuse performance.

Figure 1: Critical Success Factors for Product Line CBSE

 CBSE Success Factors

3 Chapter 9, Component-Based Software Engineering

Critical Success Factors for Product-Line CBSE
You need a systematic approach to coordinate the management and development efforts and resources
effectively. In my work at Hewlett Packard and study of Ericsson, Rational, Intecs Sistemi and several HP
customers, I have found that a successful, large-scale component reuse effort must be coherent and holistic.
Foremost, the component-based software reuse program must be aligned with, and driven by, a compelling
business reason, such as the critical need to decrease time-to-market or to meet competitive market forces.
Business needs and product-line development provide a context of organizational commitment in which
CBSE can be justified economically, technically and strategically. This will then enable process and
technical change.

An effective product-line CBSE program has the critical success factors shown in sidebar, figure 1ve.
Because of the magnitude of the changes and the careful orchestration needed, I advocate a business
process engineering strategy to restructure a software engineering organization for large-scale reuse (Griss
1995). The processes are built on Jacobson’s use case-driven methods (Jacobson et. al., 1992, 1994) to
produce the reuse-driven software engineering business (RSEB), an integrated, model-driven approach.

Integrating Architecture, Process, and Organization
A RSEB is run as a software engineering business. Software engineering goals are key to accomplishing
the organization’s business goals, and as a consequence, the software organization itself must be operated
with compatible customer and financial objectives. All processes and work products should be aligned to

these business goals. For example, in several HP divisions, a dominant and compelling business goal is to
reduce product development times, yet retain market agility across product families. Such families are
conceived to meet different customer and country needs by combining reusable components. For example
a group of divisions at HP (now at Agilent) , builds microwave instruments from common firmware
components ito create a family of compatible test systems that are configured to a variety of situations. One
cross-divisional team was set up to craft the architecture for the family and design the initial components.
Other groups within the divisions created components consistent with this architecture, or developed
applications using them. A final group was established to support and maintain the components. To initiate
and coordinate the efforts of these several divisions required involvement of senior management.

Senior management must make a strategic decision to establish one or more reuse-driven business units,
and create a context in which they will work together These units will produce multiple, related
applications, optimized around the production and reuse of components, forming an explicit component-
based product-line. An organization will only change because of an appropriate level of management
commitment, for example, a strategic statement from senior management (i.e. improve the speed with

M a n u fa c tu r e r

C u s to m e r

E n d -U s e r

A p p l i c a ti o n F a m i l y
E n g i n e e r i n g

L a ye r e d
S y s t e m

A p p l i c a ti o n S ys t e m
E n g i n e e r i n g

C o m p o n e n t S y s te m
E n g i n e e r i n g

A p p lic a t io n
S y s te m

C o m p o n e n t
S y s te m

Figure 2: The Elements of the Reuse-Driven Software Engineering Business

 CBSE Success Factors

4 Chapter 9, Component-Based Software Engineering

which new products are developed) and an adequate long-term budget. Business tradeoffs, such as expense
vs. time to market vs. profit must be managed using well-defined economic, product, and process measures.

Model-driven Development using a Standard Modeling Language
Figure 2 summarizes the key elements of the RSEB using the Unified Modeling Language (UML) Booch,
et al. 1999), an established OMG standard modeling language : The ellipses are business use cases,
representing software engineering processes, while the tabbed rectangles are systems, representing sets of
UML model elements. The stick figures are actors, representing people or organizations with which the
RSEB interacts.

Each system in Figure 2is expressed as a set of UML models.. The UML provides software designers an
unprecedented opportunity to develop and reuse precise and widely understood blueprints for software
designs and reusable infrastructures. As described below, we use the same notation to model the RSEB
processes.

Architecture
While I have tried to adjust my terminology to that of Chapter 1 and 3, there remain some inevitable
inconsistencies because the field of CBSE is still immature. There is a growing awareness in the Software
Engineering community on the importance of Software Architecture (Jacobson et al., 1997; Griss et al.,
1998, Garlan and Shaw, 1996, Kruchten, 1995;Buschmann, et al. 1996; Mowbray and Malveau, 1997).
Architecture "describes the static organization of software into subsystems interconnected through
interfaces and defines at a significant level how these software subsystems interact with each other."
(Garlan and Shaw, 1996); others include some of the essential behavior and lkey mechanisms in the
definition of architecture as well, using use-cases and interaction diagrams to capture these.Similar to how
a building architect works with customers and suppliers to analyze requirements and technology trends to
design a building, a software architect “defines and maintains the architecture of a system, that is, the
essential part of the use case, design, implementation and test models; the architect decides on which
architectural styles and patterns to use in the system.” (Jacobson, 1994). I believe this distinct role of
architect and architecture is especially important for families of large-scale systems and product-lines.

Components and component systems
In my book I use the term component for any reusable element of a development model that is loosely
coupled to other elements and is designed and packaged for reuse. Since this expands on the definition in
Chapter 1 and 3 and might be confusing with other work in this book, we will to use a slightly modified
terminology that distinguishes reusable components from other reusable elements that are part of the full
specification and elaboration of a component - these we will call component elements. However, we can
not invent totally new terminology, in order to keep some alignment with the RSEB book. Any model
element or software engineering work product can be designed for reuse and reused when a new work
product is developed. Work products intended for systematic reuse must be designed, packaged and
documented for reuse. Candidates include: use cases, classes, interfaces, patterns, tests, and source code
(such as Java Beans, Ada packages, C++ code, VB script). In the RSEB book, we called all of these
components. These are more than just modules, because are they are designed to conform to an
architecture, and complement or complete a component.

A component system is a group of reusable components and component elements connected by
relationships and interfaces that interact with each other within a layered, component infrastructure. A
component system exposes to potential reusers though a façade the minimal information and model
elements needed to effectively reuse the component system. (Note that façade is a UML 1.3 and RSEB
term describing a package of public elements, available for export; it is not the same as an interface, and
may include any model elements intended to be reused as the models for an application are built. The
facade essentially behaves as a subset model describing a consistent external view of the component
system. In some ways, it extended and enriches the more familiar notion of interface).

The commonality and variability in a product-line is made explicit through variation points and variants in
the components and other reusable component elements. Some reusable work products can be used “as is”;
others must be specialized before use. A variety of mechanisms can be used to implement variability (such
as parameters, inheritance, extensions, templates, or generators), as described below.

 CBSE Success Factors

5 Chapter 9, Component-Based Software Engineering

Middleware components

 Business specific components

 Applications

System software components

Figure 3: The RSEB component infrastructure contains three layers of component types

Layered Component Infrastructure
It is difficult to create a coherent set of compatible, reusable, maintainable parts through ad hoc reuse of
existing software, or even by the use of common platforms and libraries. You can only create reusable parts
by developing and maintaining a reuse infrastructure (architecture, frameworks, and components) as an
organizational asset.

We construct applications as layered systems with a modular, layered architecture. Each application is
represented as a separate Application System (a consistent set of models and other work products), built
using lower-level components and component elements drawn from lower-level component systems.
Layers below the application layer contain components targeted for specific business or application domain
areas (such as banking systems or microwave instruments), common middleware cross-business
components (including object request brokers (ORBs), databases, and graphical user interfaces (GUIs)),
and platform-specific (hardware and software) software components and interfaces (such as operating
system, networking, and specialized devices).

This layered architecture and component infrastructure provides components and a roadmap to help each
person in the organization understand and apply the desired engineering practice. The component
infrastructure supports platform-independent interfaces providing openness and flexibility. Different
implementations of the same interfaces can be plug-compatible. Typically, provided and needed interfaces
will be packaged with other related reusable model elements in one or more facades. Finally, the
infrastructure allows component systems to evolve independently, as new technologies and opportunities
arise.

Applications and application systems
Applications are defined by a set of connected UML models and other work products, called an Application
System. Application engineers (architects, designers, and implementers) and other "reusers" (such as
component engineers) construct software applications by selecting components and integrating them
together to form a complete system. At an early stage of software development, they would work with
reusable modular use cases. At later stages, they work with reusable design components or code classes. It
is important for developers to try to integrate the use cases from multiple components, because in doing so
they will uncover problems that would have occurred when the respective components were integrated.

Product-Line CBSE Process and Organization
A product-line CBSE creates component systems by one or more teams for reuse by other teams. Instead of
building each related application independently, the organization purposefully and proactively creates
reusable assets that are then used to build applications more rapidly and cost effectively. The RSEB links
previously independent projects, introduces new component infrastructures, changes development
processes, introduces reusable component management and funding activities, and changes the roles of

 CBSE Success Factors

6 Chapter 9, Component-Based Software Engineering

designers, process engineers, development engineers, and managers. Significant organizational change is
involved.

RSEB applies business process engineering to the software engineering organization itself. Business use
cases model the core software development processes, such as those followed by component engineers and
application engineers. These models are further refined to define the roles and responsibilities of the
workers, the workflows they enact, and the information systems and tools they use. Different structures of
the business models allow us to model various organizations.

Shown as a business use case in Figure 2, the three main categories of software engineering processes
within an RSEB are: Application Family Engineering, Application System Engineering, and Component
System Engineering.

Application family engineering
The application family engineering process creates the layered system architecture and component
infrastructures for the product-line and determines how to decompose the overall set of applications into
application systems and supporting component systems. This architectural process is a design endeavor that
creates the layers, façades, and interfaces of the subsystems and component systems that support the
complete product-line. The application family engineer (an architect or senior designer) must:

1. Understand the requirements that current users of similar systems know they need now, and in
addition what potential users think they might want to have in future applications;

2. Develop a layered infrastructure robust enough to survive the inevitable changes that will occur;

3. Identify component systems as well as individual applications; and

4. Wrap, re-engineer, or interface with existing software, such as legacy systems and/or component
producer systems.

Application system engineering
The application system engineering process selects, specializes, and assembles components and component
elements from one or more component systems (made viisble through an appropriate façade) into complete
application systems. It uses appropriate tools, methods, processes, and instructions provided explicitly with
the component system. The process begins when a customer requests a new version of an application.
Developers (sometimes including architects) first elicit the requirements from a few sources, primarily the
customers and the end-users. Then the developers express the requirements in terms of available
component infrastructures. Certain requirements are met by directly reusing some components or
specializing others. If the overall infrastructure is well designed, and if a comprehensive set of components
are available, developers (aided by librarians) can find an appropriate component or existing component
element to reuse. When no appropriate reusable component or other workproduct is available, the
developers may have to design a new component and software to meet the requirement. A reuser may
exploit variability mechanisms to adapt components to the particular application. During the modeling and
implementation of an application or component system, the reuser can insert pre-supplied or custom-built
variants (which could be a complete subsidiary component or some other reusable component element, or
some other reuser developed software element) at designated variation points to produce a specialized
element. For example, if the variability mechanism is explicit parameters for a blackbox component, then
setting the parameters to specific values, including perhaps binding some references to other components,
is the "attaching." Instead, if the component define explicit required interfaces, smaller components or other
computational elements that match these interfaces must be "plugged in." Finally, if the component is a
framework that defines abstract or concrete classes, then concrete subclasses must be supplied that inherit
from these base classes to complete the application. Thus, an application system is both customizable and
configurable.

Component system engineering
The component system engineering process designs, constructs, and packages components into component
systems. The process uses appropriate code, templates, models, dictionaries, documents, and perhaps
custom tools. The process begins when a reuse business identifies a new component system to design. The
architects and designers must elicit and analyze requirements about current needs and future trends from

 CBSE Success Factors

7 Chapter 9, Component-Based Software Engineering

multiple sources, including: business models, architects, domain experts, and application users. The goal is
to create a set of reusable components that expresses commonality and variability appropriate to the family
of applications. Architects and developers (depending on the scope of the decision)should calculate costs
and benefits for the amount of functionality and variability to incorporate in the components. Many
components will be designed with variation points and pre-built variants to increase their intended use. In
addition to using inheritance as a well-known (and unfortunately, sometimes overused) specialization
mechanism, you can also use problem-oriented languages, aspects, parameterized templates and generators
(Bassett 1996; Griss 2000).

The process concludes with the certification (including internal testing, final inspection and acceptance
testing) and packaging (including documentation, classification, examples and comparisons with other
components) of the component system for retrieval by potential reusers. See also Hedley Apperly's chapter
XX.

Incremental Transition to an RSEB
The RSEB uses a business process reengineering approach developed to systematically transition an
existing software organization into an RSEB (Jacobson, 1994). Each step in the process includes specific
organizational change management guidelines, such as the use of champions, and some reuse pragmatics,
such as the use of incremental, pilot-driven reuse adoption, and distinct reuse-maturity stages. To develop
the appropriate transition schedule, an organization must assess important business and domain drivers, as
well as its organization and process maturity.

Reuse and Process Maturity
A key question that arises when considering the transition to systematic CBSE is that of organizational
process maturity, and specifically, the implications of software engineering process maturity, as expressed
by the Software Engineering Institute’s Capability Maturity Model (CMM) (Paulk 1993; Humphrey 1996).
Indeed, reuse and the CMM are strongly related because introducing systematic software reuse is a
significant process improvement, driven by critical business need. The CMM is a process improvement
framework that summarizes key guidelines about mature software process that can be directly applied to
improved reuse practice (Humphrey 1996; Paulk, 1993). The change to a set of concurrent, managed and
supported multi-project processes demands significant organization changes and standardized process
throughout the organization. In general, it makes good business sense for an effective plan to address the
incremental reuse adoption program together with the SEI process improvement program (Griss 1998a,
1998b). Many software engineers and managers who know the CMM believe that they should delay reuse
until CMM Level 3 (Defined Process) is achieved, that is, when the entire organization is able to follow an
explicitly defined process. However, although cost-effective, organization-wide reuse requires the
discipline and formal processes characteristic of CMM Level 3 or higher, significant progress to increased
reuse can be made with lower CMM levels. Even a lesser amount of reuse can be of significant value in
reaching critical business goals such as reduced time to market. For more details, see (Griss 1998a, 1998b).

 CBSE Success Factors

8 Chapter 9, Component-Based Software Engineering

Incremental Adoption of CBSE
I have found it is best to introduce CBSE incrementally, making organization and process changes in a
series of steps. For most organizations, it is best to focus staged improvement steps on a set of pilot
projects. The stages are summarized by a simplified Reuse Maturity Model (RMM), shown in Figure 3,
based in part on experience gained from work at HP and the use of the CMM. An organization becomes
ready for a transition from one stage to another when its business needs are compelling enough to motivate
change.

These stages are:

RMM 1 - No reuse: Some code sharing may occur, but people work independently on unrelated projects.
They do not communicate about their code and often take pride in "doing it all" themselves.

RMM 2 - Informal code salvaging: When developers trust each other and their code, they begin to copy
and adapt chunks of code from one system into new systems. Although they might prefer to rewrite
the software, they copy the code to reduce time spent on a project.

RMM 3 - Planned black-box code reuse: While informal code salvaging reduces development time and
testing, maintenance problems soon increase. Multiple copies of components, each slightly different,
have to be managed. Defects found in one copy have to be found and fixed multiple times. The next
stage is a planned "black box" code reuse strategy in which carefully chosen instances of code are
reengineered into components, tested and documented for reuse, and reused without change.

RMM 4 - Managed work product reuse: To increase organization-wide reuse, you need a process that
supports an increasing number of reusers. Should everyone be “forced” to use only the standard
version? Should multiple versions be maintained? Should adaptation be allowed? Who decides?
What else should be reused? This stage leads to a defined component management process, with
distinct creator and reuse projects, and a support organization. Employees need education and help in
using these components. Strong configuration management processes and tools are needed.

RMM 5 - Architected reuse: To achieve higher levels of reuse, and gain increased coverage from design to
implementation, it is important to design the components and the infrastructure that will use them.

Incremental Adoption of Reuse

Investment, experience, time

Reuse
Benefits

No reuse

Reduced
development time

Informal
code salvaging

Planned
black-box
code reuse

Reduced
maintenance costs

Broader coverage

Interoperability
high reuse levels

Rapid custom product
development business

Significant
management
support.
Code, other
workproducts

Architected
reuse, process
metrics

 Pervasive
 domain-
 specific
 reuse

Improved time to market, costs, quality

Figure 1: Incremental adoption of reuse is driven by compelling business need.

 CBSE Success Factors

9 Chapter 9, Component-Based Software Engineering

Developing and adhering to common architectures and component infrastructures involves even more
organizational commitment and structure than ad hoc reuse of a unrelated components. Groups of
developers have to work together to agree on, and then enforce, interfaces and feature sets. Modeling
notations become critical.

RMM 6 - Pervasive domain-specific product-line CBSE: Product-lines are planned, and component
infrastructures and components are defined to ensure maximum reuse. Component development is
carefully scheduled and resourced to ensure the quickest return on the reuse investment. People
specialize in different roles, such as design for reuse, domain engineering, component engineering
and reuse library management. Separate teams operate in a concurrent, coordinated way.

Benefits, such as improved time to market, higher-quality systems, or lower overall development costs,
increase as the levels of reuse and the sophistication of the reuse program increase. Organizations cannot
easily jump steps needed to achieve mastery at a particular level, although they can begin to master and
institutionalize skills on one level while exploring the higher levels.

Conclusion
Effective systematic reuse is directly related to increased organizational process maturity. An organization
can evolve a product-line CBSE reuse business by becoming more skilled and disciplined in following
standard processes, as well as using and creating standard templates, documents and software work
products. Effective product-line CBSE requires a coherent approach that: designs a product-line component
infrastructure and components, organizes the workforce, and enables the transition of the development and
business processes. I recommended the following key steps to ensure your own “CBSE success story”:

1. Clarify the business goals that motivate product-line CBSE. Customize the CBSE program to meet
these goals. Assure that senior management supports CBSE and reuse throughout the organization.

2. Address a significant segment of the product-line or key domain with enough projected reuse of
the components to justify the extra technical and management effort. Ensure that senior
management and the engineering staff understand that the payoff will occur only if there is
repeated use.

3. Assess process maturity, experience and readiness of the organization, and plan an incremental
adoption roadmap to move the organization to mature CBSE. Use fast-paced pilot projects and
reengineer existing software into initial components, as appropriate. This will test and demonstrate
the CBSE program for an important subset of the desired architecture, components, and product-
line.

4. Design and incrementally implement a layered architecture and infrastructure for the product
family. Develop components and component systems, exploiting variability mechanisms
appropriate to the domain or product-line variability and to the developer process and tool
maturity.

5. Match the organization to the product-line structure. Assign key component and application
systems to distinct parts of the organization.

References
PG Bassett. Framing Reuse: Lessons from the Real World, Prentice Hall 1996.

G Booch, J Rumbaugh and I Jacobson, The Unified Modeling Language: User Guide, Addison-Wesley-
Longman, 1999.

J Bosch, "Product-Line Architectures and Industry: A Case Study," Proceedings of ICSE 99, 16-22 May
99, Los Angeles, California, USA, ACM press, pp. 544-554.

F. Buschmann et. al. Pattern-Oriented Software Architecture - A System of Patterns. John Wiley & sons,
1996.

J Favaro, K Favaro and P Favaro "Value Based Software Reuse Investment," Annals of Software
Engineering (5), 1998.

 CBSE Success Factors

10 Chapter 9, Component-Based Software Engineering

WB Frakes and S Isoda. "Success factors of systematic reuse." IEEE Software, 11(5): 15-19, Sep 1994.

D Garlan and M Shaw, Software Architecture, Perspectives on an Emerging Discipline, Prentice-Hall,
1996.

ML Griss "Software Reuse: A process of getting organized." Object Magazine, May 1995.

ML Griss, “Domain Engineering And Variability In The Reuse-Driven Software Engineering Business,”
Object Magazine, Dec 1996.

ML Griss, “Improved Cycle Time in the Reuse-driven Software Engineering Business,” Object Magazine,
Aug 1997.

ML Griss, "Reuse Strategies - Models and Patterns of Success." Component Strategies. SIGS. Oct. 1998.

ML Griss, “CMM as a Framework for Systematic Reuse - part 1,” Object Magazine. Mar 1998(a).

ML Griss, "CMM, PSP and TSP as a Framework for Adopting Systematic Reuse - part 2," Object
Magazine. June 1998 (b).

ML Griss, "Implementing Product-Line Features with Component Reuse,” Proceedings of the 6th
International Conference on Software Reuse, Austria, Springer-Verlag, June 2000 (To appear).

WS Humphrey, “Using a Defined and Measured Personal Software Process,” IEEE Software, May 1996,
pp. 77-88. (See also http://www.sei.cmu.edu/)

I Jacobson et al, Object-oriented software engineering: A use case driven approach, Addison-Wesley,
1992.

I Jacobson, M Ericsson and A Jacobson, The Object Advantage: Business process reengineering with
object technology, Addison-Wesley 1994.

I Jacobson, M Griss, and P Jonsson, Software Reuse: Architecture, Process and Organization for Business
Success, Addison-Wesley-Longman, 1997.

Philippe Kruchten, The 4+1 view model of architecture, IEEE Software, Nov 1995, V12, #6, pp. 42-50.

T. Mowbray and R Malveau CORBA Design Patterns. John Wiley & Sons, 1997

MC Paulk et al, “Capability Maturity Model, Version 1.1”, IEEE Software 10(4), July 1993, pp.18-27. (See
also http://www.sei.cmu.edu)

G Pour, "Component-Based Software Development: New Opportunities and Challenges," Proceedings of
the 26th International Conference on Technology of Object-Oriented Systems and Languages (TOOLS
USA’‘98), Santa Barbara, CA, August 1998.

Terminology Sidebar
• A product-line is a set of products that share a common set of requirements, but also exhibit significant

variability in requirements.

• A feature is a product characteristic that users and customers view as important in describing and
distinguishing members of the product-line. Feature-driven development has each release defined by
the features in included or omits, and focuses has teams of people focused on developing software for
sets of related) features.

• A framework is a skeletal product, comprising an implementation of key components, component
elements, infrastructure and mechanisms that are common to all members of the product-line.

• Modularity refers to the decomposition and packaging of pieces of software so as to hide decisions and
details, and thus decrease coupling between parts of the system. An extreme form of modularity is the
component, that completely packages its details behind well defined interfaces, has a well-defined
deployment lifecycle, hiding some execution details, and conforms to a well-defined infrastructure.

http://www.sei.cmu.edu/
http://www.sei.cmu.edu/

 CBSE Success Factors

11 Chapter 9, Component-Based Software Engineering

• An interface is a set of method signatures that a particular component promises to implement, or
requires that other components provide. The same method signature may be mentioned in multiple
interfaces provided or required by a component.

• A façade is a packaging of a set of component elements and other workproducts, exported from a
component system, intended to be imported and reused to create the model elements and workproducts
in some other system. A component system can offer multiple façades, each collecting a set of related
elements for convenient and consistent reuse. Some of the elements in a façade may include interfaces,
but other elements such as usecases, variants, and designs can also be present.

	Introduction
	Obstacles to Effective Component Reuse

	Critical Success Factors for Product-Line CBSE
	Integrating Architecture, Process, and Organization
	Model-driven Development using a Standard Modeling Language
	Architecture
	Components and component systems
	Layered Component Infrastructure
	Applications and application systems

	Product-Line CBSE Process and Organization
	
	Application family engineering
	Application system engineering
	Component system engineering

	Incremental Transition to an RSEB
	Reuse and Process Maturity
	Incremental Adoption of CBSE

	Conclusion
	References
	Terminology Sidebar

